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A number of coastal communities in the North-

east region have strong social and cultural ties 

to marine fisheries, and in some communities, 

fisheries represent an important economic 

activity as well.196,197 Future ocean warming and 

acidification, which are expected under all 

scenarios considered, would affect fish stocks 

and fishing opportunities available to coastal 

communities. Fisheries targeting species at the 

southern extent of their range have already 

experienced substantial declines in landings 

with rising ocean temperatures,170,173,198,199,200

and this pattern is projected to continue in the 

future (e.g., Cooley et al. 2015, Pershing et al. 

2015, Le Bris et al. 201839,40,191). Fishers may need 

to travel farther to fishing locations for species 

they currently catch,189 increasing fuel and 

crew costs. Distribution shifts (Figure 18.6) can 

also create opportunities to target new species 

moving into an area.155 The impacts and oppor-

tunities associated with these changes will not 

be evenly shared within or among fisheries, 

fleets, or communities; as such, adaptation 

may alter social dynamics, cultural ties, and 

economic benefits.201,202,203

Sea Level Rise, Storms, and Flooding

Along the Mid-Atlantic coast (from Cape 

Hatteras, North Carolina, to Cape Cod, Massa-

chusetts), several decades of tide gauge data 

through 2009 have shown that sea level rise 

rates were three to four times higher than the 

global average rate.46,205,206 The region’s sea level 

rise rates are increased by land subsidence 

(sinking)—largely due to vertical land move-

ment related to the melting of glaciers from 

the last ice age—which leaves much of the land 

in this region sinking with respect to current 

sea level.47,207,208,209 Additionally, shorter-term 

fluctuations in the variability of ocean 

dynamics,210,211 atmospheric shifts,212,213 and ice 

mass loss from Greenland and Antarctica214

have been connected to these recent acceler-

ations in the sea level rise rate in the region. 

For example, a slowdown of the Gulf Stream 

during a shorter period of extreme sea level 

rise observed over 2009–2010 has been linked 

to a weakening of the Atlantic meridional 

overturning circulation—the northward flow of 

upper-level warm, salty waters in the Atlantic 

(including the Gulf Stream current) and the 

southward flow of colder, deeper waters.215

These higher-than-average rates of sea level 

rise measured in the Northeast have also led 

to a 100%–200% increase in high tide flooding 

in some places, causing more persistent and 

frequent (so-called nuisance flooding) impacts 

over the last few decades.44,47,216,217

Coastal flood risks from storm-driven precip-

itation and surges are major drivers of coastal 

change218,219 and are also amplified by sea level 

increases.217,220,221 Storms have unique climato-

logical features in the Northeast—Nor’easters 

(named for the low-pressure systems typically 

impacting New England and the Mid-Atlantic 

with strong northeasterly winds blowing from 

the ocean over coastal areas) typically occur 

between September and April, and when 

coupled with the Atlantic hurricane season 

between June and September, the region is 

susceptible to major storms nearly year-round. 

Storm flood heights driven by hurricanes in 

New York City increased by more than 3.9 feet 

(1.2 m) over the last thousand years.14 When 

coupled with storm surges, sea level rise can 

pose severe risks of flooding, with consequent 

physical and mental health impacts on coastal 

populations (see Key Messages 4 and 5).
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Landscape Change and Impacts on 

Ecosystems Services

Because of the diversity of the Northeast’s 

coastal landscape, the impacts from storms 

and sea level rise will vary at different locations 

along the coast (Figure 18.7).12,13 Rocky and 

heavily developed coasts have limited infil-

tration capacity to absorb these impacts, and 

thus, these low-elevation areas will become 

gradually inundated.222,223 However, more 

dynamic environments, such as mainland and 

barrier beaches, bluffs, and coastal wetlands, 

have evolved over thousands of years in 

response to physical drivers. Such responses 

include erosion, overwashing, vertical accre-

tion (increasing elevation due to sediment 

movement), flooding in response to storm 

events,218,224,225 and landward migration over the 

longer term as sea level has risen.226 Uplands, 

forests, and agricultural lands can provide 

transitional areas for these more dynamic 

settings, wherein the land gradually converts 

to a tidal marsh.

Varied ecosystem services and natural features 

have long attracted and sustained people along 

the coast of the Northeast region. Ecosystem 

services—including the provisioning of 

Coastal Impacts of Climate Change

Figure 18.7: (top) The northeastern coastal landscape is composed of uplands and forested areas, wetlands and estuarine 

systems, mainland and barrier beaches, bluffs, headlands, and rocky shores, as well as developed areas, all of which provide 

a variety of important services to people and species. (bottom) Future impacts from intense storm activity and sea level rise will 

vary across the landscape, requiring a variety of adaptation strategies if people, habitats, traditions, and livelihoods are to be 

protected. Source: U.S. Geological Survey.
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groundwater resources, the filtering of non-

point source pollution, sequestering carbon, 

mitigating storm impacts and erosion, and 

sustaining working waterfronts and cultural 

features such as iconic regional landscapes, 

recreation, and traditions—are facing multiple 

climate threats. Marshes and beaches serve as 

the first line of defense for coastal property 

and infrastructure in the face of storms.227

They also provide critical habitat for a variety 

of migratory shorebirds and, when combined 

with nearshore seagrass and estuaries, serve 

as nurseries for many commercial marine 

species.37,38,150,151,228,229 Regional marshes trap 

and store carbon147,230,231,232 and help to cap-

ture non-point source pollution before it 

enters seawater.233,234,235 Regional beaches are 

important tourist and recreational attractions, 

and many coastal national parks and national 

historic sites throughout the region help 

preserve cultural heritage and iconic coastal 

landscapes.236,237 The Northeast coast is also 

home to many Indigenous peoples whose 

traditions and ways of life are deeply tied to 

land and water (Box 18.2). Coastal tribes often 

have limited resources, infrastructure, and land 

ownership, and these limitations can worsen 

the impacts of climate change and prohibit 

relocation (Ch. 15: Tribes, KM 1 and 3).

Box 18.2: Indigenous Peoples 
and Tribal Nations

Indigenous peoples and tribal nations of the North-

east region have millennia-long relationships with 

the diverse landscapes and climate zones found 

throughout the region.238,239,240 Currently, for the 18 

federally recognized, numerous state-recognized, 

and federally unrecognized tribal nations of the 

Northeast,241,242 the challenges of adapting to a 

changing climate add additional uncertainty to exist-

ing efforts for reclamation of land and sovereignty 

and the revitalization of languages and cultures (Ch. 

15: Tribes, KM 1 and 3).97,243 However, in response 

to a regional shift in the seasons, there has been an 

increase in climate adaptation work by tribes over 

the last decade (Ch.15: Tribes, Figure 15.1). These 

projects have been framed by Indigenous knowledg-

es to address impacts to culturally and economically 

important resources and species, such as brown 

ash, sweetgrass, forests, and sugar maple, as well 

inland and ocean fisheries.238,244,245,246 These proj-

ects provide important results for the tribal nations 

themselves but could also provide examples of 

adaptation and survival for other tribal nations and 

non-tribal communities to consider as they work 

towards a deeper and more complex engagement 

to address future landscapes.97,240 Although not all 

tribally led climate research and projects across 

regions have been reported or published, there are 

even fewer publicly available examples in the North-

east region, and especially for state-recognized and 

unrecognized tribes. This seems to present itself 

as a potential future research opportunity for tribal 

engagement and collaborations in the Northeast 

(Ch. 15: Tribes).97
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Projections of Future Sea Level Rise and 

Coastal Flooding

Projections for the region suggest that sea 

level rise in the Northeast will be greater 

than the global average of approximately 

0.12 inches (3 mm) per year.247,248 According 

to Sweet et al. (2017),47 the more probable sea 

level rise scenarios—the Intermediate-Low and 

Intermediate scenarios from a recent federal 

interagency sea level rise report (App. 3: Data 

& Scenarios)—project sea level rise of 2 feet 

and 4.5 feet (0.6 m and 1.4 m) on average in the 

region by 2100, respectively.47 The worst-case 

and lowest-probability scenarios, however, 

project that sea levels in the region would rise 

upwards of 11 feet (3 m) on average by the end 

of the century.47 The higher projections for the 

region as compared with most others in the 

United States are due to continued changes in 

oceanic and atmospheric dynamics, thermal 

expansion, ice melt contributions from Green-

land and Antarctica, and ongoing subsidence in 

the region due to tectonics and non-tectonic  

effects such as groundwater withdraw-

al.47,50,249,250,251,252 Furthermore, the strongest 

hurricanes are anticipated to become both 

more frequent and more intense in the future, 

with greater amounts of precipitation (Ch. 2: 

Climate, Box 2.5).50,253,254,255 Thirty-two percent 

of open-coast north and Mid-Atlantic beaches 

are predicted to overwash during an intense 

future nor’easter type storm,256 a number that 

increases to more than 80% during a Category 

4 hurricane.257,258

Future Adaptability of the Coastal Landscape

The dynamic ability of coastal ecosystems 

to adapt to climate-driven changes depends 

heavily upon sufficient sediment supply, ele-

vation and slope, barriers to migration,225 tidal 

restrictions, wave climatology,219,259 and the 

rates of sea level rise. Although nearly 70% of 

the Northeast coast has some physical ability 

to dynamically change,13 an estimated 88% of 

the Northeast population lives on developed 

coastal landforms that have limited ability to 

naturally adapt to sea level rise.260 Built infra-

structure along the coast, such as seawalls, 

bulkheads, and revetments, as well as natural 

barriers, such as coastal bluffs, limits landward 

erosion; jetties and groins interrupt alongshore 

sediment supply; and culverts and dams create 

tidal restrictions that can limit habitat suitabil-

ity for fish communities (see Figure 18.7).261 An 

estimated 26% of open ocean coast from Maine 

to Virginia contains engineering structures.262

While these structures can help mitigate haz-

ards to people and property, they also reduce 

the land area for ecosystem migration, as well 

as the adaptive capacity of natural coastal envi-

ronments.43,227,263,264 The ability of marshes in the 

region to respond to sea level-induced change 

varies by location, with some areas increasing 

in elevation, experiencing vegetation shifts, 

and/or expanding in extent while others are 

not.265,266,267,268,269,270,271 Forest diebacks, or “ghost 

forests,” due to wetland encroachment70,272 are 

being observed in southern New Jersey and 

Maryland (Figure 18.8), although one study 

found that southern New England forests are 

not showing similar signs of dieback.273

Forest Dieback Due to Sea Level Rise

Figure 18.8: Atlantic white cedars dying near the banks of 

the Bass River in New Jersey show wetland encroachment 

on forested areas. Photo credit: Ted Blanco/Climate Central.
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Projected changes in climate will threaten the 

integrity of coastal landforms and ecosystems 

that provide services people and animals rely 

on and that act as important natural buffers to 

hazards. Under more extreme scenarios (such 

as the higher scenario, RCP8.5), marshes are 

unlikely to survive and, thus, would convert 

to open water.224,274,275 At lower rates of sea 

level rise, marsh health will depend heavily 

upon site-specific hydrologic, physical, and 

sediment supply conditions.259,275,276,277,278 Long-

term coastal erosion, as driven by sea level 

rise and storms, is projected to continue, with 

one study finding the shoreline likely to erode 

inland at rates of at least 3.3 feet (1 m) per 

year among 30% of sandy beaches along the 

U.S. Atlantic coast.279 Continued increases in 

the rate of sea level rise—on the order of 0.08 

inches (2 mm) per year above the 20th-century 

rate—could cause much of the open ocean 

coasts in the Mid-Atlantic to transition to a 

state wherein coastal barrier systems migrate 

landward more rapidly, experience reductions 

in width or height, and overwash and breach 

more frequently.280 Such an increase is project-

ed to occur this century under the Intermedi-

ate-Low scenario, which suggests that global 

sea levels will rise approximately 0.24 inches (6 

mm) per year.47

An ongoing challenge, now and in the future, 

is to adequately account for and determine the 

monetary value of the ecosystem services pro-

vided by marine and coastal environments6,41,281

and to adaptively manage the ecosystems to 

achieve targets that are responsive to both 

development and conservation.282

These changes to the coastal landscape would 

threaten the sustainability of communities 

and their livelihoods. Historical settlement 

patterns and ongoing development combine to 

increase the regional vulnerability of coastal 

communities to sea level rise, coastal storms, 

and increased inundation during high tides 

and minor storms. For example, estimates 

of coastal property losses and protective 

investments through 2100 due to sea level 

rise and storm surge vary from less than $15 

billion for southeastern Massachusetts to in 

excess of $30 billion for coastal New Jersey and 

Delaware under either the lower (RCP4.5) or 

higher (RCP8.5) scenarios (discounted at 3%).29

Saltwater intrusion can also impact drinking 

water supplies, including the alteration of 

groundwater systems.283,284 A growing area of 

research explores potential migration patterns 

in response to climate-related coastal impacts, 

where coastal states such as Massachusetts, 

New Jersey, and New York are anticipated 

to see large outflows of migrants, a pattern 

that would stress regional locations further 

inland.285 In addition to property and infra-

structure impacts (Key Message 3), the facili-

ties and cultural resources that support coastal 

tourism and recreation (such as parking lots, 

pavilions, and boardwalks), as well as cultural 

landscapes and historic structures,236,237 will be 

at increased risk from high tide flooding, storm 

surge, and long-term inundation. In some 

locations, these culturally and socially import-

ant structures also support economic activity; 

for example, many fishing communities rely on 

small docks and other shoreside infrastructure 

for their fishing operations, increasing the risk 

of substantial disruption if they are lost to sea 

level rise and increasing storm frequency.45,286
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Key Message 3 

Maintaining Urban Areas 
and Communities and Their 
Interconnectedness

The Northeast’s urban centers and their 

interconnections are regional and na-

tional hubs for cultural and economic 

activity. Major negative impacts on crit-

ical infrastructure, urban economies, and 

nationally significant historic sites are 

already occurring and will become more 

common with a changing climate. 

Climate–Infrastructure Interaction and 

Heightened Risks 

Northeastern cities, with their abundance 

of concrete and asphalt and relative lack of 

vegetation, tend to have higher temperatures 

than surrounding regions due to the urban 

heat island effect (increased temperatures, 

typically measured during overnight periods, 

in highly urbanized areas in comparison 

to outlying suburban, exurban, and rural 

locations). During extreme heat events, 

nighttime temperatures in the region’s big 

cities are generally several degrees higher 

than surrounding regions, leading to higher 

risk of heat-related death. In urban areas, the 

hottest days in the Northeast are also often 

associated with high concentrations of urban 

air pollutants including ground-level ozone 

(Ch. 13: Air Quality, KM 1). This combination of 

heat stress and poor urban air quality can pose 

a major health risk to vulnerable groups: young 

children, elderly, socially or linguistically iso-

lated, economically disadvantaged, and those 

with preexisting health conditions, including 

asthma. Vulnerability is further heightened 

as key infrastructure, including electricity 

for air conditioning, is more likely to fail pre-

cisely when it is most needed—when demand 

exceeds available supply—with the potential 

for substantial negative health consequences.287

Finally, vulnerability to heat waves is not evenly 

distributed throughout the region. Rather, 

outdoor versus indoor air temperatures, 

baseline health, occupation, and access to air 

conditioning are important determinants of 

vulnerability (see Key Message 4). 

Urban areas are at risk for large numbers of 

evacuated and displaced populations and 

damaged infrastructure due to both extreme 

precipitation events and recurrent flooding, 

potentially requiring significant emergency 

response efforts and consideration of long-

term commitment to rebuilding and adap-

tation, and/or support for relocation where 

needed. Poor, elderly, historically marginalized, 

recent immigrants, and linguistically or socially 

isolated individuals as well as those populations 

with existing health disparities are more 

vulnerable to precipitation events and flooding 

due to a limited ability to prepare for and cope 

with such events.59

Critical Infrastructure Service Disruption

Much of the infrastructure in the Northeast, 

including drainage and sewer systems, flood 

and storm protection assets, transportation 

systems, and power supply, is nearing the end of 

its planned life expectancy. Current water-related 

infrastructure in the United States is not designed 

for the projected wider variability of future 

climate conditions compared to those recorded 

in the last century (Ch. 3: Water, KM 2). In order 

to make Northeast systems resilient to the kind 

of extreme climate-related disruptions the region 

has experienced recently—and the sort of dis-

ruptions projected for the future—would require 

significant new investments in infrastructure. For 

example, in Pennsylvania, bridges are expected 

to be more prone to damage during extreme 

weather events, because the state leads the 

country in the highest percentage of structurally 

deficient bridges.288 Pennsylvania’s water treat-

ment and wastewater systems are also notably 

aging, requiring an estimated $28 billion in new 
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investment over the next 20 years for repairs and 

to meet increasing demands.288

Climate-related disruptions will only exacer-

bate existing issues with aging infrastructure. 

Sea level rise has amplified storm impacts 

in the Northeast region (Key Message 2), 

contributing to higher surges that extend 

further inland, as demonstrated in New York 

City.14,15,16 Sea level rise is leading to an increase 

in the frequency of coastal flooding, a trend 

that is projected to grow for cities such as 

Baltimore and Washington, DC.289 High tide 

flooding has increased by a factor of 10 or 

more over the last 50 years for many cities in 

the Northeast region and will become increas-

ingly synonymous with regular inundation, 

exceeding 30 days per year for an estimated 20 

cities by 2050 even under a very low scenario 

(RCP2.6).216 More frequent high tide flooding 

(also referred to as nuisance, or sunny day, 

flooding) will be experienced at low-elevation 

cities and towns in the region (Figure 18.9). Sea 

level rise (see Key Message 2) under higher 

scenarios will likely increase property losses 

from hurricanes and other coastal storms for 

the region by $6–$9 billion per year by 2100, 

while changes in hurricane activity could raise 

these estimates to $11–$17 billion per year.260

In other words, projected future costs are 

estimated to continue along a steep upward 

trend relative to what is being experienced 

today. However, there is limited published 

research that quantifies the costs associated 

with increased damage across an entire 

system in response to amplified storm events. 

Actions to replace and/or significantly modify 

the Northeast’s aging infrastructure provide 

opportunities to incorporate climate change 

adaptation and resilience into standard capital 

upgrades, reducing these future costs. 

Impacts on Urban Economies

Service and resource supply infrastructure 

in the Northeast region is at increasing risk 

of disruption, resulting in lower quality of 

life, economic declines, and increased social 

inequality.17 Loss of public services affects the 

capacity of communities to function as admin-

istrative and economic centers and triggers 

disruptions of interconnected supply chains 

(Ch. 16: International, KM 1). Interdependencies 

across critical infrastructure sectors such as 

water, energy, transportation, and telecom-

munication can lead to cascading failures 

during extreme weather and climate-related 

disruptions,17,59 as occurred during the 2003 

blackout in New York City (Ch. 17: Complex 

Systems, Box 17.5; Ch. 11: Urban). For example, 

the Northeast is projected to experience a 

significant increase in summer heat and the 

number and/or duration of heat waves that 

will further stress summertime energy peak 

Mitigation in the Northeast

The Northeast region has traditionally been a leader 

in greenhouse gas mitigation action, serving as 

a potential model for other states. The Regional 

Greenhouse Gas Initiative is the first mandatory 

market-based program in the United States to cap 

and reduce CO2 emissions from the power sector 

through a cooperative effort among Connecticut, 

Delaware, Maine, Maryland, Massachusetts, New 

Hampshire, New York, Rhode Island, and Vermont.

King Tide Flooding in Northeast

Figure 18.9: The photo shows king tide  ooding on Dock

Street in Annapolis, Maryland, on December 21, 2012. Photo 

credit: Amy McGovern (CC BY 2.0).
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load demands from higher air conditioning 

use and the greater need to pump and treat 

water. Energy supply failures can also affect 

transportation operations, and even after 

electricity is restored, a significant time lag 

can occur until transportation services such 

as subway signals and traffic lights return to 

operation.290 Understanding and coping with 

these interdependencies require cross-sector 

analysis and engagement by the private sector 

and within and across different levels of gov-

ernment. As a result, the connection between 

climate impacts, adaptation, and sustained 

economic development of cities is a major 

concern in the region.

The large number of manufacturing, distribu-

tion, and storage facilities, as well as historic 

structures, in the region are also vulnerable to 

climate shifts and extremes. For example, pow-

er plants in New York City tend to be located 

along the coastline for easy access to water for 

cooling and maritime-delivered fuel and are 

often located within about 16 feet (5 m) of sea 

level.59 This is not unusual, as there are many 

power plants and petroleum storage facilities 

located along the Northeast coastline.291

The historic preservation community 

has begun to address the issue of climate 

change.292,293 Many historic districts in cities 

and towns, such as Annapolis, Maryland, and 

Newport, Rhode Island, are at low elevations 

along the coast and now face the threat of 

rising sea levels.

Preparedness in Cities and Towns

Projected increases in coastal flooding, heavy 

precipitation, runoff, and extreme heat would 

have negative impacts on urban centers with 

disproportionate effects on at-risk communities. 

Larger cities, including Boston, MA, Burlington, 

VT, Hartford, CT, Newark, NJ, Manchester, NH, 

New York, Philadelphia, PA, Pittsburgh, PA, 

Portland, ME, Providence, RI, and Washington, 

DC, have begun to plan for climate change and in 

some instances have started to implement action, 

particularly when upgrading aging infrastructure 

(e.g., NYC Special Initiative for Rebuilding and 

Resiliency 2013, Climate Ready Boston 2016, 

City of Philadelphia 2016, City of Pittsburgh 

2017294,295,296,297). Examples from municipalities of 

varying sizes are common (e.g., U.S. EPA 201733). 

These cities seek to maintain the within-city 

and intercity connectivity that fosters growth, 

diversity, liveliness of urban neighborhoods, and 

protection of vulnerable populations, including 

the elderly, young, and disadvantaged. Further, 

city leaders hope to avoid forced migration of 

highly vulnerable populations and the loss of his-

torical and cultural resources. City managers and 

stakeholders recognize that extreme heat events, 

sea level rise, and storm surge have the potential 

to lead to complex disasters and sustained critical 

infrastructure damage. Specific actions cities are 

taking focus largely on promoting the resilience 

of critical infrastructure, enhancing the social 

resilience of communities (especially of vulnerable 

populations), promoting ecosystem service haz-

ard mitigation, and developing new indicators and 

monitoring systems to achieve a better under-

standing of climate risks and to identify adapta-

tion strategies (see Key Message 5) (see also Ch. 

11: Urban). In the Northeast region, Superstorm 

Sandy illustrated urban coastal flooding risk, and 

many localities, not just those directly impacted 

by the storm, have developed increased coastal 

resilience plans and efforts. New York City has 

been able to put in place a broad set of efforts in a 

variety of critical infrastructure sectors, including 

making the subway more protected from flooding 

(Figure 18.10).
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Many Northeast cities are served by combined 

sewer systems that collect and treat both 

storm water and municipal wastewater. 

During heavy rain events, combined systems 

can be overwhelmed and release untreated 

sewage into local bodies of water.298 Moderate 

flooding events are expected to become more 

frequent in most of the Northeast during the 

21st century because of more intense precip-

itation related to climate change.58,142 Finally, 

increased precipitation and high streamflows 

also increase streambed erosion, especially 

when coupled with wetter soils prior to storm 

events.299,300 Erosion at bridges can cause 

bridge failures,301 leading to transportation 

disruption, injuries, and potential fatalities.

The impacts of changes in precipitation and 

temperature on water supply system behavior 

in the Northeast are complex. Future potable 

water supplies are expected to be adequate 

to meet future demand on average across 

the Northeast, but the number of watersheds 

where demand exceeds supply is projected to 

increase under most climate change scenari-

os.302 Studies of specific water systems in the 

Northeast show mixed results. The New York 

City reservoir system shows high resilience 

and reliability under different climate change 

scenarios.303 Projected flows in the Potomac 

River, the primary water supply for the Wash-

ington, DC, metropolitan area, are lower in 

most climate change scenarios, with minor to 

major impacts on water supply.304

Key Message 4 

Threats to Human Health

Changing climate threatens the health 

and well-being of people in the Northeast 

through more extreme weather, warmer 

temperatures, degradation of air and 

water quality, and sea level rise. These 

environmental changes are expected to 

lead to health-related impacts and costs, 

including additional deaths, emergency 

room visits and hospitalizations, and a 

lower quality of life. Health impacts are 

expected to vary by location, age, current 

health, and other characteristics of indi-

viduals and communities. 

Health Effects of Extreme Heat

Present-day high temperatures (heat) have 

been conclusively linked to a higher risk of 

illness and death, particularly among older 

adults, pregnant women, and children (Ch 14: 

Human Health). A number of studies have repli-

cated these findings specifically in the North-

east (see Box 18.3; e.g., Wellenius et al. 2017, 

Bobb et al. 2014, Hondula et al. 2012305,306,307).  

Ambient temperatures and heat-related 

health effects can vary significantly over small 

geographic areas due to local land cover (for 

example, due to the urban heat island effect; 

see Key Message 3) (see also Ch. 5: Land 

Changes, KM 1), topography, and the resilience 

of individuals and communities.307,308 For 

Subway Air Vent Flood Protection

Figure 18.10: The photo shows a subway air vent with a 

multiuse raised  ood protection grate that was installed as

part of the post–Superstorm Sandy coastal resilience efforts 

on West Broadway in lower Manhattan, New York City. Photo 

credit: William Solecki.
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example, older or sicker individuals and those 

persons who are without access to air condi-

tioning, living in older homes, socially isolated, 

or working outdoors are considered particular-

ly vulnerable to the effects of heat.309,310,311

Annual average temperature over the contigu-

ous United States has increased by 1.2°F (0.7°C) 

over the last few decades and by 1.8°F (1.0°C) 

relative to the beginning of the last century. 

Recent decades are the warmest in at least 

the past 1,500 years.312 Average annual tem-

peratures across the Northeast have increased 

from less than 1°F (0.6°C) in West Virginia to 

about 3°F (1.7°C) or more in New England since 

1901.18,19 Although the relative risk of death on 

very hot days is lower today than it was a few 

decades ago, heat-related illness and death 

remain significant public health problems in 

the Northeast.20,21,22,23 For example, a study in 

New York City estimated that in 2013 there 

were 133 excess deaths due to extreme heat.24

Annual average temperature in the contiguous 

United States is expected to increase by an 

additional 2.5°F (1.4°C) over the next few 

decades regardless of future greenhouse gas 

emissions (Ch 2: Climate).50 By 2050, average 

annual temperatures in the Northeast are 

expected to increase by 4.0°F (2.2°C) under the 

lower scenario (RCP4.5) and 5.1°F (2.8°C) under 

the higher scenario (RCP8.5) relative to the 

near present (1975–2005),50 with several more 

days of extreme heat occurring throughout the 

region each year. 

These projected increases in temperature 

are expected to lead to substantially more 

premature deaths, hospital admissions, and 

emergency department visits due to heat 

across the Northeast.23,25,26,27,28,29 For example, 

in the Northeast we can expect approximately 

650 more excess deaths per year caused by 

extreme heat by 2050 under either a lower or 

higher scenario (RCP4.5 or RCP8.5) and 960 

(under RCP4.5) to 2,300 (under RCP8.5) more 

excess deaths per year by 2090.29

The risks associated with present-day and pro-

jected future heat can be minimized by reduc-

ing greenhouse gas emissions, minimizing 

exposure through urban design, or increasing 

individual and community resilience.23,29,313 For 

example, in the Northeast region, Philadelphia 

and New York City have been leaders in imple-

menting policies and investing in infrastructure 

aimed at reducing the number of excess deaths 

from extreme heat.314 Compared to the higher 

scenario (RCP8.5), 1,400 premature deaths from 

extreme temperatures could be avoided in the 

Northeast each year by 2090 if global green-

house gas emissions are consistent with the 

lower scenario (RCP4.5), resulting in $21 billion 

in annual savings (in 2015 dollars).29

Box 18.3: Rising Temperatures and Heat-Related Emergency Room Visits in Rhode Island

Moderate and extreme heat events already pose a health risk today,305,306,315,316 and climate change could in-

crease this risk. Of note, days of moderate heat occur much more often compared to days of extreme heat, 

such that days of moderate heat may, in aggregate, be associated with a larger number of adverse health 

events.315 Average summertime temperatures are projected to continue to rise through the end of the century, 

raising concern about the public health impact of climate change across Northeast communities. A nationwide 

study projected that some of the largest increases in heat-related mortality would occur in the Northeast region, 

with an additional 50–100 heat-related deaths per year per million people by 2050 and 120–180 additional 

deaths per million people by 2100 under the mid-high scenario (RCP6.0).28 Heat health risks seem to be high-

est at the start of the warm weather each year317 and among vulnerable populations such as outdoor workers, 

young children, and the elderly. 
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Box 18.3: Rising Temperatures and Heat-Related Emergency Room Visits in Rhode Island, continued

In the small, coastal northeastern state of Rhode Island (population of about 1 million), maximum daily temperatures in 

the summer have trended upwards over the last 60 years such that Rhode Islanders experienced about three more weeks 

of uncomfortably hot weather over 2015–2016 than in the 1950s (Figure 18.11, left panel). A recent study looking at 

visits to hospital emergency rooms (ERs) found that the risk of heat-related ER visits increased sharply as maximum daily 

temperatures climbed above 80°F (Figure 18.11, middle panel).26 The researchers projected that with continued climate 

change, Rhode Islanders could experience an additional 400 (6.8% more) heat-related ER visits each year by 2050 and 

up to an additional 1,500 (24.4% more) such visits each year by 2095 under the higher scenario (RCP8.5; Figure 18.11, 

right panel). Importantly, about 1,000 fewer annual heat-related ER visits are projected for the end of the century under 

the lower scenario (RCP4.5) compared to the higher scenario (RCP8.5), representing the potential protective benefit of 

limiting greenhouse gas emissions. Such reductions would also lead to improvements in air pollution and health start-

ing today.318,319

In response to the health threat from heat, local National Weather Service offices issue heat advisories and excessive 

heat warnings when the forecast calls for very hot weather. Based on the results of a study across multiple states,305

the National Weather Service Northeast Region updated its heat advisory guidelines to be issued when the heat index 

is forecast to exceed 95°F for any amount of time on two or more days or 100°F for any amount of time on a single day. 

Many communities in the Northeast have implemented plans to respond to these heat alerts to better protect the public’s 

health (for example, with the Centers for Disease Control and Prevention’s Building Resilience Against Climate Effects pro-

gram), although gaps in knowledge remain.34,314 Uncertainties exist in the estimation of the cumulative impact on health of 

multiple aspects of weather, including heat, drought,320 and heavy precipitation,321,322,323 all of which have potential adverse 

impacts on human health.

Figure 18.11: This  gure shows the observed and projected impacts of excess heat on emergency room visits in Rhode

Island. (left) In Rhode Island, maximum daily temperatures in the summer have trended upwards over the last 60 years, such 

that residents experienced about three more weeks of health-threatening hot weather over 2015–2016 than in the 1950s. 

(middle) A recent study looking at visits to hospital emergency rooms (ERs) found that the incidence rate of heat-related 

ER visits rose sharply as maximum daily temperatures climbed above 80°F. (right) The study estimates that with continued 

climate change, Rhode Islanders could experience an additional 400 (6.8% more) heat-related ER visits each year by 2050 

and up to an additional 1,500 (24.4% more) such visits each year by 2095 under the higher scenario (RCP8.5). About 1,000 

fewer annual heat-related ER visits are projected for the end of the century under the lower scenario (RCP4.5) compared 

to the higher scenario (RCP8.5), re ecting the estimated health bene ts of adhering to a lower greenhouse gas emissions

scenario. Sources: (left) Brown University; (middle, right) adapted from Kingsley et al. 2016.26 Reproduced from Environmental 

Health Perspectives.

Observed and Projected Impacts of Excess Heat  

on Emergency Room Visits in Rhode Island
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Health Effects of Air Pollution, 

Aeroallergens, and Wild res

Climate change is increasing the risk of illness 

and death due to higher concentrations of air 

pollutants in many parts of the United States 

(Ch. 13: Air Quality). In the Northeast, climate 

change threatens to reverse improvements 

in air quality that have been achieved over 

the past couple of decades. For example, 

climate change is projected to influence future 

levels of ground-level ozone pollution in the 

Northeast by altering weather conditions and 

impacting emissions from human and natural 

sources.324,325,326 This “climate penalty,” whereby 

reductions in ozone precursor emissions are at 

least partially offset by a changing climate, is 

projected to lead to substantially more ozone 

pollution-related deaths;324,325,29 200–300 more 

excess deaths per year by 2050 compared to 

2000 by one estimate.325

Excess deaths due to ground-level ozone 

pollution are projected to increase substan-

tially under both lower (RCP4.5) and higher

(RCP8.5) scenarios.29 Reducing global emissions 

of greenhouse gases from a higher scenario to 

a lower scenario could prevent approximately 

360 deaths per year due to air quality in 2090, 

saving approximately $5.3 billion per year (in 

2015 dollars, undiscounted).327 Moreover, many 

sources of the greenhouse gas emissions that 

contribute to climate change also contribute 

to degraded air quality today, with adverse 

effects on people’s health. The adverse health 

risks from air pollution can be reduced in the 

present and in the future by addressing these 

common emission sources.319

More frequent and severe wildfires due to cli-

mate change pose an increasing risk to human 

health through impacts on air quality (Ch. 13:

Air Quality, KM 2). Wildfire smoke can travel 

hundreds of miles, as occurred in 2015 when 

Canadian wildfire smoke caused air quality 

exceedance days in Baltimore, Maryland.328

Climate change is also expected to lengthen 

and intensify pollen seasons in parts of the 

United States, potentially leading to additional 

cases of allergic rhinitis (also known as hay 

fever) and allergic asthma episodes (Ch. 13:

Air Quality, KM 3).29,329 Among individuals with

allergic asthma, exposure to certain types of 

pollen can result in worsening of symptoms 

leading to increases in allergy medication sales 

and emergency room visits for asthma, as 

already documented in New York City.330

Indoors, climate change is expected to bring 

conditions that foster mold growth, such as 

more dampness, and more frequent power 

outages that impair ventilation. Damp indoor 

conditions and mold are both known to be 

associated with respiratory illnesses including 

asthma symptoms and wheezing.331 When 

damp conditions occur in buildings, rapid 

action could be warranted—remediation in a 

northeastern office building after the develop-

ment of respiratory or severe non-respiratory 

symptoms by building inhabitants was not 

effective in reducing symptoms.332

Changing Ecosystems and Risk of Vector-

Borne Disease

The risk posed by vector-borne diseases (those 

transmitted by disease-carriers such as fleas, 

ticks, and mosquitoes) such as Lyme disease and

West Nile virus under a changing climate is also of 

concern in the Northeast region. These diseases, 

specifically tick-related Lyme disease, have been

linked to climate, particularly with abundant 

late-spring and early-summer moisture. By 

2065–2080, under the higher scenario (RCP8.5)

it is projected that the period of elevated risk of 

Lyme disease transmission in the Northeast will

begin 0.9–2.8 weeks earlier between Maine and 

Pennsylvania, compared to the climate observed 

over 1992–2007).67 Similarly, a recent analysis 

estimates that there would be an additional 490 

cases of West Nile neuroinvasive disease per year 

in the Northeast by 2090 under the higher 
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scenario (RCP8.5) versus 210 additional cases per 

year under the lower scenario (RCP4.5).29 The 

geographic range of suitable habitats for other 

mosquito vectors such as the northern house 

mosquito (Culex pipiens and Culex restuans, 

which transmit West Nile virus) and the Asian 

tiger mosquito (Aedes albopictus, which can 

also transmit West Nile virus and other mos-

quito-borne diseases) is expected to continue 

shifting northward into New England in the 

next several decades and through the end of the 

century as a result of climate change.333,334

Gastrointestinal Illness from Waterborne and 

Foodborne Contaminants 

Another consequence of climate change is the 

spread of marine toxins and pathogens (Key Mes-

sage 2). Some of these pathogens pose health risks 

through consumption of contaminated seafood. 

Harmful algal blooms, which can cause paralytic 

shellfish poisoning in humans, have become more 

frequent and longer lasting in the Gulf of Maine.335

Similarly, pathogenic strains of the waterborne bac-

teria Vibrio—which are already causing thousands 

of foodborne illnesses per year—have expanded 

northward and have been responsible for increasing 

cases of illness in oyster consumers in the Northeast 

region.336,337,338

Combined sewer systems (where municipal 

wastewater and storm water use the same pipes) 

are particularly common in the Northeast given 

the older infrastructure typical of the region.339

When runoff from heavy precipitation exceeds 

the capacity of these systems, combined sewer 

overflow containing untreated sewage is released 

into local waterways, potentially impacting the 

quality of water used for recreation or drinking. 

For example, a study in Massachusetts found an 

increased risk of gastrointestinal illness with heavy 

precipitation causing combined sewer overflows.322

Increased risk of campylobacteriosis and salmonella 

has been documented in Maryland with increased 

heavy precipitation and streamflows.340,341 Moderate 

flooding events are expected to become more 

frequent in most of the Northeast during the 21st 

century because of more intense precipitation 

related to climate change.105,142 This could, therefore, 

increase the frequency of combined sewer overflows 

and waterborne disease. Some cities and towns 

are making substantial investments to reduce or 

eliminate the risks of combined sewer overflows 

(Figure 18.12). 

Storm-related power outages can also pose a risk 

of foodborne illness.343 Increased diarrheal illnesses 

from consumption of spoiled food have also been 

documented in New York City in 2003 following a 

power outage that affected millions in the Northeast 

(Ch. 17: Complex Systems, Box 17.5).344

District of Columbia Water and Sewer Authority’s 

Clean Rivers Project

Figure 18.12: The District of Columbia Water and Sewer 

Authority’s Clean Rivers Project342 aims to reduce combined 

sewer over ows into area waterways. The Clean Rivers

Project is expected to reduce over ows annually by 96%

throughout the system and by 98% for the Anacostia River. 

In addition, the project is expected to reduce the chance of 

 ooding in the areas it serves from approximately 50% to

7% in any given year and reduce nitrogen discharged to the 

Chesapeake Bay by approximately 1 million pounds per year. 

Photo credit: Daniel Lobo (CC BY 2.0).
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Mental Health and Well-Being

In addition to the adverse impacts on people’s 

physical health, climate change is also asso-

ciated with adverse impacts on mental health 

(Ch. 14: Human Health, KM 1). Specifically in the 

Northeast region, sea level rise, storm surge, 

and extreme precipitation events associated 

with climate change will contribute to higher 

risk of flooding in both coastal and inland 

areas—particularly in urban areas with large 

amounts of impervious surface that increases 

water runoff. In addition to the risks of physical 

injury, waterborne disease, and healthcare 

service disruption caused by flooding, lasting 

mental health consequences, such as anxiety, 

depression, and post-traumatic stress disorder 

can impact affected communities, as was 

observed in the wake of Superstorm Sandy in 

2012 (Box 18.4).349 Extreme weather events can 

have both immediate, short-term effects, as 

well as longer-term impacts on mental health 

and well-being that can last years after the 

specific event. 

Extreme heat can also affect mental health and 

well-being. Higher outdoor temperatures are 

associated with decreases in subtle aspects 

of well-being such as decreased joy and hap-

piness350 and increased aggression and vio-

lence.351 Underlying mental health conditions 

and geography also affect vulnerability. For 

example, a study of hospitalization for heat- 

related illness among people with mental 

health disorders showed increased risk in 

rural versus urban areas, possibly due to lower 

availability of mental health services in these 

rural areas.352

Separately, large population changes from cli-

mate-driven human migration could substantially 

influence both coastal and inland communities 

in the Northeast region (see also Key Messages 

2 and 5).285 The impacts of human migration on 

health and well-being depend on myriad factors, 

including the context of the migration.353

Box 18.4: Role of Public Health 
and Healthcare Sector in 
Resilience and Prevention

There are numerous examples of how the public 

health and healthcare sectors are preparing for climate 

change and making energy saving changes, as high-

lighted in the U.S. Department of Health and Human 

Services’ report on enhancing healthcare resilience.345

One such example occurred in Greenwich, Connecticut, 

where Greenwich Hospital installed a combined heat 

and power system that conserves energy and provided 

stability in the wake of Superstorm Sandy.346

In June 2016, severe flooding in West Virginia resulted 

from a “thousand-year storm”347 and highlighted the 

important role of the healthcare sector in building resil-

ience to extreme precipitation events. A recent study of 

the event described the role of state and federal govern-

ment working in partnership with healthcare volunteer 

organizations to effectively mobilize a response in the 

setting of such a disaster.348 It emphasized the critical 

importance of healthcare professionals in providing 

emotional and mental health support to the response 

volunteers and the affected communities, as well as 

a need to increase capacity in these areas.348 See Key 

Message 5 in this chapter and Chapter 14: Human 

Health, Key Message 3 for more information on addi-

tional adaptation efforts that protect health.

Figure 18.13: A Red Cross volunteer talks with a 

community resident after the 2016 West Virginia  oods.

Additionally, local medical professionals mobilized to staff 

temporary clinical sites. Photo credit: National Guard 

Bureau Public Affairs.
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Regional Variation in Health Impacts and 

Vulnerability

Although climate change affects all residents of 

the Northeast region, risks are not experienced 

equally. The impact of climate change on an 

individual depends on the degree of exposure, 

the individual sensitivity to that exposure, and 

the individual or community-level capacity 

to recover (Ch. 14: Human Health, KM 2).354

Thus, health impacts of climate change will 

vary across people and communities of the 

Northeast region depending on social, socio-

economic, demographic, and societal factors; 

community adaptation efforts; and underlying 

individual vulnerability (see Key Message 

5) (see also Ch. 28: Adaptation). Particularly 

vulnerable groups include older or socially 

isolated adults, children, low-income commu-

nities, and communities of color.

Key Message 5 

Adaptation to Climate Change Is 
Underway 

Communities in the Northeast are proac-

tively planning and implementing actions 

to reduce risks posed by climate change. 

Using decision support tools to develop 

and apply adaptation strategies informs 

both the value of adopting solutions and 

the remaining challenges. Experience 

since the last assessment provides 

a foundation to advance future adap-

tation efforts. 

Communities, towns, cities, counties, states, 

and tribes across the Northeast are engaged 

in efforts to build resilience to environmental 

challenges and adapt to a changing climate. 

Developing and implementing climate 

adaptation strategies in daily practice often 

occur in collaboration with state and federal 

agencies (e.g., New Jersey Climate Adaptation 

Alliance, New York Climate Clearinghouse, 

Massachusetts StormSmart Coasts and Climate 

Action Tool, Rhode Island StormTools, EPA, 

CDC).30,31,32,33,34,355,356 Advances in rural towns, 

cities, and suburban areas include low-cost 

adjustments of existing building codes and 

standards. In coastal areas, partnerships 

among local communities and federal and state 

agencies leverage federal adaptation tools and 

decision support frameworks (the National 

Oceanic and Atmospheric Administration’s 

[NOAA] Digital Coast, the U.S. Geological Sur-

vey’s [USGS] Coastal Change Hazards Portal, 

New Jersey’s Getting to Resilience).

Increasingly, cities and towns across the 

Northeast region are developing or implement-

ing plans for adaptation and resilience in the 

face of a changing climate (e.g., EPA 201733). 

These approaches are designed to maintain 

and enhance the everyday life of residents 

and promote economic development. In some 

cities, adaptation planning has been used to 

respond to present and future challenges in 

the built environment. Regional efforts have 

recommended changes in design standards 

when building, replacing, or retrofitting infra-

structure to account for a changing climate 

(Box 18.5). For example, the Port Authority of 

New York and New Jersey provided guidelines 

for engineers to account for projected changes 

in temperature, precipitation, and sea level rise 

when designing infrastructure assets.357 The 

cities of Philadelphia, Pennsylvania,296 Utica, 

New York,358 and Boston, Massachusetts,295

promote the use of green infrastructure to 

build resilience, particularly in response to 

flooding risk (Ch. 8: Coastal, Figure 8.2). In 

Jamaica Bay, New York, post–Superstorm San-

dy efforts have fostered a set of local, regional, 

state, and federal actions that link resilience 

efforts to current climate risk, along with the 

potential for accelerated sea level rise and its 

implications for increased flood frequency (Ch. 

28: Adaptation, KM 1).359
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The issue of water security has emerged from 

vulnerability assessments and cuts across 

urban and rural communities. One example 

is the Washington, DC, metropolitan area’s 

potential use of the Potomac and Occoquan 

estuaries as water supplies and of retired 

quarries as water storage facilities.304 Adaptive 

reservoir operations have been implemented 

in the Northeast and other regions of the 

United States to better manage plausible 

future climate conditions and to meet other 

management goals (Ch. 3: Water, KM 3). Tribal 

nations have also focused on adaptation and 

the vulnerability of their water supplies, based 

on long-standing local values and traditional 

knowledge, including the use of water for 

drinking, habitat for fish and wildlife, agricul-

ture, and cultural purposes.97,360,361

While resilience efforts have focused on 

microscale adaptations to current climate 

risks, communities are increasingly seeing a 

need for larger-scale adaptation efforts. Wide 

disparities in adaptive capacity exist among 

communities in the region. Larger, often 

better-resourced communities have created 

climate offices and programs, while response 

has lagged in smaller or poorer communities 

that are often more dependent on county- or 

state-level programs and expertise. The move 

from small-scale to larger-scale and more 

transformative adaptation efforts involves 

complex policy transition planning, social and 

economic development, and equity consid-

erations (Ch. 28: Adaptation, KM 4).362,363 This 

includes attention to community concerns 

about green gentrification—the practice of 

making environmental improvements in urban 

areas—that generally increases property  

values but often also drives out lower- 

income residents.364

Box 18.5: Adapting the Northeast’s Cultural Heritage

A defining characteristic of the Northeast region is its rich, dense record of cultural heritage, marked by historic 

structures, archaeological sites, and cultural landscapes. The ability to preserve this cultural heritage is chal-

lenged by climate change. National parks and historic sites in the Northeast are already witnessing cultural re-

source impacts from climate change, and more impacts are expected in the future.236 These cultural resources 

present unique adaptation challenges, and the region is moving forward with planning for future adaptation.

Superstorm Sandy caused substantial damage to coastal New York Harbor parks, including Gateway Nation-

al Recreation Area and Statue of Liberty National Monument, where buildings and the landscape surround-

ing the statue and on Ellis Island were impacted and the museum collections were threatened by the loss of 

climate control systems that were flooded.370,371 Sea level rise amplifies the impacts of storm events such as 

Superstorm Sandy, and the parks are using recovery as an opportunity to rebuild with more resilience to future 

storms.371,372,373 Heating and electrical systems in historic buildings have been elevated from basement levels. 

Design changes, such as using non-mold-growing materials and other engineering solutions, have been made 

while maintaining the buildings’ historic character. Following the storm, Gateway National Recreation Area add-

ed climate change vulnerability to their planning process for prioritizing historic structures between preserve, 

stabilize, or ruin. The recreation area has been implementing these priorities as part of the recovery process, 

providing examples of climate adaptation implementation.359,374 The human community on Rockaways peninsu-

la also responded to Sandy by using urban forestry and agricultural practices to recover and to buffer against 

the impact of future storms (see Building Resiliency at the Rockaways 360 tour375).
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Decision Support Tools and Adaptation 

Actions

While adaptation is progressing in a variety of 

forms in the Northeast region, many efforts 

have focused on assessing risks and developing 

decision support tools. Many of these assess-

ments and tools have proven useful for specific 

purposes. Structured decision-making is where 

decision-makers engage at the outset to define 

a problem, objectives, alternative management 

actions, and the consequences and tradeoffs 

of such actions—before making any decisions. 

It is being increasingly applied to design 

management plans, determine research needs, 

and allocate resources to preserve habitat and 

resources throughout the region.151,365,366,367

There has been little attention devoted to 

evaluating and communicating the suitability 

and robustness of the many tools that are now 

available. Efforts to evaluate decision support 

tools and processes in a rigorous scientific 

manner would help stakeholders choose the 

best tools to answer particular questions under 

specific circumstances. 

One significant advancement that communities 

and infrastructure managers have made in 

recent years has been the development of 

risk, impact, and adaptation indicators, as 

well as monitoring systems to measure and 

understand climate change and its impacts.15

In recognizing the economic impacts of infra-

structure service loss and disruption, govern-

ment agencies have begun adaptation analyses 

to identify those infrastructure elements 

most critical for regional economic resilience 

during climate-related disruptions, as well as 

to identify communities most exposed to acute 

and chronic climate risks.45,368,369

Resource managers, community leaders, and 

other stakeholders are altering the manage-

ment of coastal areas and resources in the 

context of climate change (Boxes 18.6 and 18.7). 

Box 18.6: Building Resilience in the Chesapeake Bay Watershed

The Chesapeake Bay watershed is experiencing stronger and more frequent storms, an increase in heavy 

precipitation events, increasing bay water temperatures, and a rise in sea level. These trends vary throughout 

the watershed and over time but are expected to continue over the next century under all scenarios considered. 

The trends are altering both the ecosystems and mainland and island communities of the Chesapeake Bay 

watershed. Achieving watershed goals would require changes in policies, programs, and/or projects to achieve 

restoration, sustainability, conservation, and protection goals for the entire system.

To gain a better understanding of the likely impacts of climate change, as well as potential management solu-

tions for the watershed, the 2014 Chesapeake Bay Watershed Agreement committed the NOAA Chesapeake 

Bay Program (CBP) Partnership to take action to “increase the resiliency of the Chesapeake Bay watershed, in-

cluding its living resources, habitats, public infrastructure and communities, to withstand adverse impacts from 

changing environmental and climate conditions.” This new Bay Agreement goal builds on the 2010 Total Max-

imum Daily Load (TMDL) documentation and 2009 Presidential Executive Order 13508376,377 that called for an 

assessment of the impacts of a changing climate on the Chesapeake Bay’s water quality and living resources. 

To achieve this goal and regulatory mandates, the CBP Partnership is undertaking efforts to monitor and assess 

trends and likely impacts of changing climatic and sea level conditions on the Chesapeake Bay ecosystem and 

to pursue, design, and construct restoration and protection projects to enhance resilience. The CBP Climate 
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For example, research in Delaware is exploring 

the use of seashore mallow as a transitional 

salt-tolerant crop because of gradual wetland 

migration onto agricultural lands as sea levels 

rise.379 Commercial and recreational fisheries 

and tourism depend upon living marine 

resources. Climate adaptation in ocean fisher-

ies will entail coping and long-term planning 

responses at multiple levels of communities, 

industry, and management systems.380 Fishers 

have traditionally switched species as needed 

based on ecosystem or market conditions; this 

will continue to be an important adaptation 

option, but it is increasingly constrained by 

regulatory approaches in fisheries.155,178,179,202

Longer-term planning for climate adaptation 

has included state commissions to evaluate 

ocean acidification threats,381,382 federal efforts 

to articulate science strategies,383,384,385 species 

vulnerability assessments,143,186 coupled social–

ecological vulnerability assessments for fishing 

communities,45 and planning for the potential 

inland migration of coastal populations due to 

sea level rise.386

The winter recreation industry has long con-

sidered snowmaking an adaptation to climate 

change.387 Snowmaking improvements should 

assist with the viability of some Northeast 

ski areas,117 while new tourism opportu-

nities emerge.388

In order to sustain and advance these and 

other planned efforts towards climate change 

adaptation and resilience, decision-makers 

in the Northeast need to be aware of existing 

constraints and emerging issues. Constraints 

from the management, economic, and social 

context are highly uncertain.389 These efforts 

have faced a variety of barriers and limitations, 

including lack of funding and jurisdictional and 

legal constraints.390,391 In many cases, adapta-

tion has been limited to coping responses that 

address short-term needs and are feasible 

within the current institutional context, 

whereas longer-term, more transformative 

efforts will likely require complex policy transi-

tion planning and frameworks that can address 

social and economic equality.363 The need for 

solutions that support industry and community 

flexibility in responding to climate-related 

changes has also been recognized.45,178

Earth’s changing climate is one of several 

stressors on human and natural systems, and it 

can work to exacerbate existing vulnerabilities 

and inequalities. Implementing resilience 

planning and climate change adaptation in 

Box 18.6: Building Resilience in the Chesapeake Bay Watershed, continued

Resiliency Workgroup’s Management Strategy recognizes that it is important to build community and institutional 

capacity and to develop analytical capability to build cross-science disciplinary knowledge and better understanding 

of societal responses. A significant activity now underway is geared towards the midpoint assessment of progress 

towards the 2025 Chesapeake Bay TMDL goal for water quality standard attainment. As part of the TMDL midpoint 

assessment, the CBP Partnership has developed tools and procedures to quantify the effects of climate change on 

watershed flows and pollutant loads, storm intensity, increased estuarine temperatures, sea level rise, and ecosystem 

influences, including loss of tidal wetland attenuation with sea level rise. Current modeling efforts are underway to 

assess potential climate change impacts under a range of projected climate change outcomes for 2025 and 2050.378

Addressing climate change within the context of established watershed planning and regulatory efforts is extremely 

complex and requires sound climate science, climate assessments, modeling, policy development, and stakeholder 

engagement (Ch. 28: Adaptation, Figure 28.1). The CBP Partnership is tackling this challenge on all of these fronts, 

with priority directed to understanding what is needed to achieve the 2025 nutrient reduction goals and the best man-

agement practices required to achieve climate-resilient rehabilitation goals. 
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Box 18.7: Science for Balancing Wildlife and Human Needs in the Face of Sea Level RiseBox 18.7: Science for Balancing Wildlife and Human Needs in the Face of Sea Level Rise

Policymakers, agencies, and natural resource manag

ers are under increasing pressure to manage coastal 

areas to meet social, economic, and natural resource 

demands, particularly as sea levels rise. Scientific knowl

edge of coastal processes and habitat use can support 

decision-makers as they balance these often-conflicting 

human and ecological needs. In collaboration with a wide 

network of natural resource professionals from state and 

federal agencies (including the U.S. Fish and Wildlife Ser

vice and National Park Service) and private conservation 

organizations, a research team from the U.S. Geological 

Survey (USGS) is conducting research and developing 

tools to identify suitable coastal habitats for species of 

concern, such as the piping plover (Charadrius melodus)—)—

an ecologically important species with low population 

numbers—under a variety of sea level rise scenarios. 

The multidisciplinary USGS team uses historical and 

current habitat availability and coastal characteristics to 

develop models that forecast likely future habitat from 

Maine to North Carolina.392,393 The collaborative partners, 

both researchers and managers, are critical to the pro-

gram: they aid in data collection efforts through the “iPlo

ver” smartphone application394 and help scientists focus 

research on specific management questions. Because 

these shorebirds favor sandy beaches that overwash 

frequently during storms, the resulting habitat maps also 

define current and future areas of high hazard exposure 

for humans and infrastructure. 

Land-use planners can use results to determine optimal 

locations for constructing recreational facilities that min

imize impacts on sensitive habitats and have a low prob

ability of being overwashed. Alternatively, results can help 

resource managers proactively protect the highest-quality 

habitats to meet near- and long-term conservation goals and, in so doing, increase beach access for users by reducing 

human–bird conflicts and improving the certainty of beach availability for recreational use.

Figure 18.14: (a, b) These photographs show suitable 

piping plover habitat for (c) rearing chicks along the U.S. 

Atlantic coast. Photo credits: (a, b) Sara Zeigler, U.S. 

Geological Survey; (c) Josh Seibel, U.S. Fish and Wildlife 

Service.
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order to preserve the cultural, economic, and 

natural heritage of the Northeast would require 

ongoing collaboration among tribal, rural, 

and urban communities as well as municipal, 

state, tribal, and federal agencies. The number 

and scope of existing adaptation plans in the 

Northeast show that many people in the region 

consider this heritage to be important.
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Traceable Accounts

Process Description

It is understood that authors for a regional assessment must have scientific and regional credibil-

ity in the topical areas. Each author must also be willing and interested in serving in this capacity. 

Author selection for the Northeast chapter proceeded as follows:

First, the U.S. Global Change Research Program (USGCRP) released a Call for Public Nominations. 

Interested scientists were either nominated or self-nominated and their names placed into a 

database. The concurrent USGCRP Call for Public Nominations also solicited scientists to serve 

as chapter leads. Both lists were reviewed by the USGCRP with input from the coordinating lead 

author (CLA) and from the National Climate Assessment (NCA) Steering Committee. All regional 

chapter lead (CL) authors were selected by the USGCRP at the same time. The CLA and CL then 

convened to review the author nominations list as a “first cut” in identifying potential chapter 

authors for this chapter. Using their knowledge of the Northeast’s landscape and challenges, the 

CLA and CL used the list of national chapter topics that would be most relevant for the region. 

That topical list was associated with scientific expertise and a subset of the author list. 

In the second phase, the CLA and CL used both the list of nominees as well as other scientists 

from around the region to build an author team that was representative of the Northeast’s geog-

raphy, institutional affiliation (federal agencies and academic and research institutions), depth 

of subject matter expertise, and knowledge of selected regional topics. Eleven authors were thus 

identified by December 2016, and the twelfth author was invited in April 2017 to better represent 

tribal knowledge in the chapter.

Lastly, the authors were contacted by the CL to determine their level of interest and willingness 

to serve as experts on the region’s topics of water resources, agriculture and natural resources, 

oceans and marine ecosystems, coastal issues, health, and the built environment and urban issues. 

On the due diligence of determining the region’s topical areas of focus

The first two drafts of the Northeast chapter were structured around the themes of water 

resources, agriculture and natural resources, oceans and marine ecosystems, coastal issues, 

health, and the built environment and urban issues. During the USGCRP-sponsored Regional 

Engagement Workshop held in Boston on February 10, 2017, feedback was solicited from approx-

imately 150 online participants (comprising transportation officials, coastal managers, urban 

planners, city managers, fisheries managers, forest managers, state officials, and others) around 

the Northeast and other parts of the United States, on both the content of these topical areas 

and important focal areas for the region. Additional inputs were solicited from other in-person 

meetings such as the ICNet workshop and American Association of Geographers meetings, both 

held in April 2017. All feedback was then compiled with the lessons learned from the USGCRP 

CLA-CL meeting in Washington, DC, also held in April 2017. On April 28, 2017, the author team met 

in Burlington, Vermont, and reworked the chapter’s structure around the risk-based framing of 

interest to 1) changing seasonality, 2) coastal/ocean resources, 3) rural communities and liveli-

hoods, 4) urban interconnectedness, and 5) adaptation.
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Key Message 1 

Changing Seasons Affect Rural Ecosystems, Environments, and Economies

The seasonality of the Northeast is central to the region’s sense of place and is an important 

driver of rural economies. Less distinct seasons with milder winter and earlier spring conditions 

(very high confidence) are already altering ecosystems and environments (high confidence) 

in ways that adversely impact tourism (very high confidence), farming (high confidence), and 

forestry (medium confidence). The region’s rural industries and livelihoods are at risk from 

further changes to forests, wildlife, snowpack, and streamflow (likely). 

Description of evidence base

Multiple lines of evidence show that changes in seasonal temperature and precipitation cycles 

have been observed in the Northeast.3,4,109,110,124,154,158 Projected increases in winter air temperatures 

under lower and higher scenarios (RCP4.5 and RCP8.5)3,4 will result in shorter and milder cold 

seasons, a longer frost-free season,3 and decreased regional snow cover and earlier snow-

melt.108,109,110,395,396,397 Observed seasonal changes to streamflows in response to increased winter 

precipitation, changes in snow hydrology,112,138,139,140 and an earlier but prolonged transition into 

spring68 are projected to continue.105

These changes are affecting a number of plant and animal species throughout the region, includ-

ing earlier bloom times and leaf-out,71,73,158 spawning,164 migration,84,166,398 and insect emergence,74 as 

well as longer growing seasons,72 delayed senescence, and enhanced leaf color change.103 Milder 

winters will likely contribute to the range expansion of wildlife and insect species,399 increase 

the size of certain herbivore populations78 and their exposure to parasitism,81,82 and increase the 

vulnerability of an array of plant and animal species to change.66,103,143

Warmer winters will likely contribute to declining yields for specialty crops35 and fewer operation-

al days for logging88 and snow-dependent recreation.115,116,118 Excess moisture is the leading cause 

of crop loss in the Northeast,35 and the observed increase in precipitation amount, intensity, and 

persistence is projected to continue under both lower and higher scenarios.3,4,124,125

Major uncertainties

Warmer fall temperatures affect senescence, fruit ripening, migration, and hibernation, but are 

less well studied in the region98 and must be considered alongside other climatic factors such as 

drought. Projections for summer rainfall in the Northeast are uncertain,4 but evaporative demand 

for surface moisture is expected to increase with projected increases in summer temperatures.3,4

Water use is highest during the warm season;141,400 how much this will affect water availability for 

agricultural use depends on the frequency and intensity of drought during the growing season.302

Description of con dence and likelihood

There is high confidence that the combined effects of increasing winter and early-spring tem-

peratures and increasing winter precipitation (very high confidence) are changing aquatic and 

terrestrial habitats and affecting the species adapted to them. The impact of changing seasonal 

temperature, moisture conditions, and habitats will vary geographically and impact interactions 
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among species. It is likely that some will not adapt. There is high confidence that over the next 

century, some species will decline while other species introduced to the region thrive as condi-

tions change. There is high confidence that increased precipitation in early spring will negatively 

impact farming, but the response of vegetation to future changes in seasonal temperature and 

moisture conditions depends on plant hardiness for medium confidence in the level of risk to 

specialty crops and forestry. A reduction in the length of the snow season by mid-century is highly 

likely under lower and higher scenarios, with very high confidence that the winter recreation 

industry will be negatively impacted by the end of the century under lower and higher scenarios 

(RCP4.5 and RCP8.5).

Key Message 2 

Changing Coastal and Ocean Habitats, Ecosystem Services, and Livelihoods

The Northeast’s coast and ocean support commerce, tourism, and recreation that are important 

to the region’s economy and way of life. Warmer ocean temperatures, sea level rise, and ocean 

acidification (high confidence) threaten these services (likely). The adaptive capacity of marine 

ecosystems and coastal communities will influence ecological and socioeconomic outcomes as 

climate risks increase (high confidence).

Description of evidence base

Warming rates on the Northeast Shelf have been higher than experienced in other ocean regions,39

and climate projections indicate that warming in this region will continue to exceed rates expect-

ed in other ocean regions.48,49 Multiple lines of research have shown that changes in ocean tem-

peratures and acidification have resulted in distribution,7,8,10 productivity,39,173,191,401 and phenology 

shifts155,158,163,164,166 in marine populations. These shifts have impacted marine fisheries and prompted 

industry adaptations to changes.155,176,200

Research also shows that sea level rise has been12,46,205,206 and will be higher in the Northeast with 

respect to the rest of the United States12,249,250,251 due largely to vertical land movement,207,208,209

varying atmospheric shifts and ocean dynamics,210,211,212,213,215,252 and ice mass loss from the polar 

regions.214 High tide flooding has increased216,402 and will continue to increase,403 and storm surges 

due to stronger and more frequent hurricanes50,254,255 have been and will be amplified by sea level 

rise.217,220,221,289 Climate-related coastal impacts on the landscape include greater potential for 

coastal flooding, erosion, overwash, barrier island breaching and disaggregation, and marsh con-

version to open water,12,216,223,226,256,257,258,259,263,279,404 which will directly affect the ability of ecosystems 

to sustain many of the services they provide. Changes to salt marshes in response to sea level rise 

have already been observed in some coastal settings in the region, although their impacts are site 

specific and variable.265,266,267,268,269,270,271,405 Studies quantifying sea level rise impacts on other types 

of coastal settings (such as beaches) in the region are more limited; however, there is consensus 

on what impacts under higher rates of relative sea level rise might look like due to geologic history 

and modern analogs elsewhere (such as the Louisiana coast).12,226,404 Although probabilistically low, 

worst-case sea level rise projections that account for ice sheet collapse47,406 would result in sea 

level rise rates far beyond the rates at which natural systems are likely able to adapt,274,275,280 affect-

ing not only ecosystems function and services but also likely substantially changing the coastal 

landscape largely through inundation.223
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Major uncertainties

Although work to value coastal and marine ecosystems services is still evolving,6,41,281 changes to 

coastal ecosystem services will depend largely on the adaptability of the coastal landscape, direct 

hits from storms, and rate of sea level rise, which have identified uncertainties. Lower sea level 

rise rates are more probable, though the timing of ice sheet collapse407 and the variability of ocean 

dynamics are still not well understood210,211,215 and will dramatically affect the rate of rise.47,406 It 

is also difficult to anticipate how humans will contend with changes along the coast389 and how 

adjacent natural settings will respond. Furthermore, specific tipping points for many coastal 

ecosystems are still not well resolved275,277,280 and vary due to site-specific conditions224,274

The Northeast Shelf is sensitive to ocean acidification, and many fisheries in the region are depen-

dent on shell-forming organisms.181,182,186 However, few studies that have investigated the impacts 

of ocean acidification on species biology and ecology used native populations from the region182

or tested the effects at acidification levels expected over the next 20–40 years.143 Moreover, there 

are limited studies that consider the effects of climate change in conjunction with multiple other 

stressors that affect marine populations.39,40,178,408 Limited understanding of the adaptive capacity 

of species to environmental changes presents major uncertainties in ecosystem responses to 

climate change.143,409 How humans will respond to changes in ecosystems is also not well known, 

yet these decisions will shape how marine industries and coastal communities are affected by 

climate change.45

Description of con dence and likelihood

Warming ocean temperatures (high confidence), acidification (high confidence), and sea level rise 

(very high confidence) will alter coastal and ocean ecosystems (likely) and threaten the ecosystems 

services provided by the coasts and oceans (likely) in the Northeast. There is high confidence

that ocean temperatures have caused shifts in the distribution, productivity, and phenology of 

marine species and very high confidence that high tide flooding and storm surge impacts are 

being amplified by sea level rise. Because much will depend on how humans choose to address or 

adapt to these problems, and as there is considerable uncertainty over the extent to which many 

of these coastal systems will be able to adapt, there is medium confidence in the level of risk to 

traditions and livelihoods. It is likely that under higher scenarios, sea level rise will significantly 

alter the coastal landscape, and rising temperatures and acidification will affect marine popula-

tions and fisheries.

Key Message 3 

Maintaining Urban Areas and Communities and Their Interconnectedness

The Northeast’s urban centers and their interconnections are regional and national hubs 

for cultural and economic activity. Major negative impacts on critical infrastructure, urban 

economies, and nationally significant historic sites are already occurring and will become more 

common with a changing climate. (High Confidence)
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Description of evidence base

The urban built environment and related supply and management systems are at increased risk of 

disruption from a variety of increasing climate risks. These risks emerge from accelerated sea level 

rise as well as increased frequency of coastal and estuarine flooding, intense precipitation events, 

urban heating and heat waves, and drought.

Coastal flooding can lead to adverse health consequences, loss of life, and damaged property and 

infrastructure.368 Much of the region’s major industries and cities are located along the coast, with 

88% of the region’s population and 68% of the regional gross domestic product.260 High tide flood-

ing is also increasingly problematic and costly.47 Rising sea level and amplified storm events can 

increase the magnitude and geographic size of a coastal flood event. The frequency of dangerous 

coastal flooding in the Northeast would more than triple with 2 feet of sea level rise.93 In Boston, 

the areal extent of a 1% (1 in 100 chance of occurring in any given year) flood is expected to 

increase multifold in many coastal neighborhoods.295 However, there will likely be notable variabil-

ity across coastal locations. Using the 2014 U.S. National Climate Assessment’s Intermediate-High 

scenario for sea level rise (a global rise of 1.2 meters by 2100), the median number of flood events 

per year for the Northeast is projected to increase from 1 event per year experienced today to 5 

events by 2030 and 25 events by 2045, with significant variation within the region.410

Intense precipitation events can lead to riverine and street-level flooding affecting urban 

environments. Over recent decades, the Northeast has experienced an increase of intense precip-

itation events, particularly in the spring and fall.411 From 1958 to 2016, the number of heaviest 1% 

precipitation events (that is, an event that has a 1% chance of occurring in any given year) in the 

Northeast has increased by 55%.58 A recent study suggests that this trend began rather abruptly 

after 1996, though uniformly across the region.411

Urban heating and heat waves threaten the health of the urban population and the integrity of the 

urban landscape. Due to the urban heat island effect, summer surface temperatures across North-

east cities were an average of 13°F to 16°F (7°C to 9°C) warmer than surrounding rural areas over 

a three-year period, 2003 to 2005.412 This is of concern, as rising temperatures increase heat- and 

pollution-related mortality while also stressing energy demands across the urban environment.413

However, the degree of urban heat island intensity varies across cities depending on local factors 

such as whether the city is coastal or inland.414 Recent analysis of mortality in major cities of 

the Northeast suggests that the region could experience an additional 2,300 deaths per year by 

2090 from extreme heat under RCP8.5 (compared to an estimated 970 deaths per year under the 

lower scenario, RCP4.5) compared to 1989–2000.29 Another study that considered 1,692 cities 

around the world suggested that without mitigation, total economic costs associated with climate 

change could be 2.6 times higher due to the warmer temperatures in urban versus extra-urban 

environments.415

Changes in temperature and precipitation can have dramatic impacts on urban water supply 

available for municipal and industrial uses. Under a higher scenario (RCP8.5), the Northeast is 

projected to experience cumulative losses of $730 million (discounted at 3% in 2015 dollars) due to 

water supply shortfalls for the period 2015 to 2099.29 Under a lower scenario (RCP4.5), the North-

east is projected to sustain losses of $510 million (discounted at 3% in 2015 dollars).29 The losses are 

largely projected for the more southern and coastal areas in the region. 
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Major uncertainties

Projecting changes in urban pollution and air quality under a changing climate is challenging 

given the associated complex chemistry and underlying factors that influence it. For example, fine 

particulates (PM2.5; that is, particles with a diameter of or less than 2.5 micrometers) are affected 

by cloud processes and precipitation, amongst other meteorological processes, leading to consid-

erable uncertainty in the geographic distribution and overall trend in both modeling analysis and 

the literature.29 Land use can also play an unexpected role, such as planting trees as a mitigation 

option that may lead to increases in volatile organic compounds (VOCs), which, in a VOC-limited 

environment that can exist in some urban areas such as New York City, may increase ozone con-

centrations (however, it is noted that most of the Northeast region is limited by the availability of 

nitrogen oxides).327

Interdependencies among infrastructure sectors can lead to unexpected and amplified conse-

quences in response to extreme weather events. However, it is unclear how society may choose 

to invest in the built environment, possibly strengthening urban infrastructure to plausible 

future conditions. 

Description of con dence and likelihood

There is high confidence that weather-related impacts on urban centers already experienced today 

will become more common under a changing climate. For the Northeast, sea level rise is projected 

to occur at a faster rate than the global average, potentially increasing the impact of moderate and 

severe coastal flooding.47

By the end of the century and under a higher scenario (RCP8.5), Coupled Model Intercomparison 

Project Phase 5 (CMIP5) models suggest that annual average temperatures will increase by more 

than 9°F (16°C) for much of the region (2071–2100 compared to 1976–2005), while precipitation is 

projected to increase, particularly during winter and spring.50

Extreme events that impact urban environments have been observed to increase over much of 

the United States and are projected to continue to intensify. There is high confidence that heavy 

precipitation events have increased in intensity and frequency since 1901, with the largest increase 

in the Northeast, a trend projected to continue.50 There is very high confidence that extreme heat 

events are increasing across most regions worldwide, a trend very likely to continue.50 Extreme 

precipitation from tropical cyclones has not demonstrated a clear observed trend but is expected 

to increase in the future.50,253 Research has suggested that the number of tropical cyclones will 

overall increase with future warming.416 However, this finding is contradicted by results using a 

high-resolution dynamical downscaling study under a lower scenario (RCP4.5), which suggests 

overall reduction in frequency of tropical cyclones but an increase in the occurrence of storms of 

Saffir–Simpson categories 4 and 5.50
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Key Message 4 

Threats to Human Health

Changing climate threatens the health and well-being of people in the Northeast through more 

extreme weather, warmer temperatures, degradation of air and water quality, and sea level rise 

(very high confidence). These environmental changes are expected to lead to health-related 

impacts and costs, including additional deaths, emergency room visits and hospitalizations, 

and a lower quality of life (very high confidence). Health impacts are expected to vary by 

location, age, current health, and other characteristics of individuals and communities (very high 

confidence). 

Description of evidence base

Extreme storms and temperatures, overall warmer temperatures, degradation of air and water 

quality, and sea level rise are all associated with adverse health outcomes from heat,20,21,22,23,305,306,307

poor air quality,324,325,326 disease-transmitting vectors,67,333,334 contaminated food and water,322,340,341,344

harmful algal blooms,335 and traumatic stress or health service disruption.17,349 The underlying 

susceptibility of populations determines whether or not there are health impacts from an expo-

sure and the severity of such impacts.307,308

Major uncertainties

Uncertainty remains in projections of the magnitude of future changes in particulate matter, 

humidity, and wildfires and how these changes may influence health risks. For example, 

health effects of future extreme heat may be exacerbated by future changes in absolute or 

relative humidity.

Health impacts are ultimately determined by not just the environmental hazard but also the 

amount of exposure, size and underlying susceptibility of the exposed population, and other 

factors such as health insurance coverage and access to timely healthcare services. In project-

ing future health risks, researchers acknowledge these challenges and use different analytic 

approaches to address this uncertainty or note it as a limitation.23,28,326

In addition, there is a paucity of literature that considers the joint or cumulative impacts on 

health of multiple climatic hazards. Additional areas where the literature base is limited include 

specific health impacts related to different types of climate-related migration, the impact of 

climatic factors on mental health, and the specific timing and geographic range of shifting dis-

ease-carrying vectors.

Description of con dence and likelihood

There is very high confidence that extreme weather, warmer temperatures, degradation of air and 

water quality, and sea level rise threaten the health and well-being of people in the Northeast. 

There is very high confidence that these climate-related environmental changes will lead to addi-

tional adverse health-related impacts and costs, including premature deaths, more emergency 

department visits and hospitalizations, and lower quality of life. There is very high confidence that 

climate-related health impacts will vary by location, age, current health, and other characteristics 

of individuals and communities.
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Key Message 5 

Adaptation to Climate Change Is Underway

Communities in the Northeast are proactively planning (high confidence) and implementing 

(medium confidence) actions to reduce risks posed by climate change. Using decision support 

tools to develop and apply adaptation strategies informs both the value of adopting solutions 

and the remaining challenges (high confidence). Experience since the last assessment provides 

a foundation to advance future adaptation efforts (high confidence).

Description of evidence base

Reports on climate adaptation and resilience planning have been published by city, state, and 

tribal governments and by regional and federal agencies in the Northeast. Examples include the 

Interstate Commission on the Potomac River Basin (for the Washington, DC, metropolitan area),304

Boston,295 the Port Authority of New York and New Jersey,357 the St. Regis Mohawk Tribe,360 the 

U.S. Army Corps of Engineers,368 the State of Maine,381 and southeastern Connecticut.417 Structured 

decision-making is being applied to design management plans, determine research needs, and 

allocate resources365 to preserve habitat and resources throughout the region.151,366,367

Major uncertainties

The percentage of communities in the Northeast that are planning for climate adaptation and 

resilience and the percentage of those using decision support tools are not known. More case 

studies would be needed to evaluate the effectiveness of adaptation actions. 

Description of con dence and likelihood

There is high confidence that there are communities in the Northeast undertaking planning efforts 

to reduce risks posed from climate change and medium confidence that they are implementing 

climate adaptation. There is high confidence that decision support tools are informative and 

medium confidence that these communities are using decision support tools to find solutions for 

adaptation that are workable. There is high confidence that early adoption is occurring in some 

communities and that this provides a foundation for future efforts. This Key Message does not 

address trends into the future, and therefore likelihood is not applicable.
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